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Abstract. High entropy alloys (HEA) containing Co, Fe, Ni have recently enjoyed considerable 

attention in the physical and material sciences due to their interesting mechanical and magnetic 

properties that are further enhanced by the additive manufacturing technique often used to 

process them. HEAs are theoretically difficult to describe as they often form amorphous 

structures and the Bloch theorem is not applicable. In this article the method of the effective 

medium is used and the corresponding many body problem is solved self-consistently within the 

coherent potential approximation. The mixing entropy of HEAs is explained using an 

optimization approach. The complex micro and multi-phase structures are due to many body 

effects that are discussed from a calculation of the quasiparticle density of states. It turns out that 

these many body effects are most significant if the n components of the alloy are present at about 

equal proportions. Using alternatively a lattice gas model to represent the disordered alloy the 

existence of a second order phase transition is confirmed; the transition temperature is calculated. 

Heat capacity and entropy are evaluated as a function of temperature 𝑇. It is shown that the 

results of the two model calculations are in qualitative agreement with one another and must thus 

be regarded as good and reliable. 

1. Introduction

High entropy alloys (HEA) have been studied since 2003 [1] mainly due to their exceptional mechanical
properties, i.e. high yield and ultimate strengths, high structural and phase stability, good corrosion
resistance, and high hardness. These properties make high entropy alloys suitable for high temperature
applications, e.g. gas turbines in the aerospace industry. They are also routinely used in boat structures,
racing car bodies, spaceships, and other constructions of a challenging nature. High entropy alloys are
novel or composite materials with about equal proportions of several metals. The basic idea is to create
a multi-element single phase solid solution alloy. This feature makes HEAs different to conventional
alloys which consist of a primary component with small amounts of additional elements added.
Examples for such conventional alloys are bronze (88% Cu and 12% Sn) and carbon steel (96% Fe and
4% C). On the other hand, in high entropy alloys additional elements may be added to Fe to form a new
material with properties very much different to those of the individual components. As each HEA can
be modified by minor variations in the choice of added elements, the possible number of new alloy bases
is vast [2]. Elements with different crystal structures are mixed with the possibility to form various new
phases. An example is the single phase CoCrFeNi high entropy alloy which forms an f.c.c. crystal lattice
even though Ni, Fe, and Co on their own all crystallize in different lattice structures. To form single
phase structures a homogeneous distribution of elements is useful but not necessary [3]. Due to their
high mixing entropy high entropy alloys often form multi-phase or even amorphous structures. In the
CoCrCuFeNi alloy complex microstructures are observed consisting of amorphous regions and
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magnetic nanoparticles forming a superparamagnetic phase. Other alloys exhibit a gap in the density of 
states near the Fermi level which makes them interesting due to their electronic and magnetic properties 
as Kondo insulators [4]. Possible applications as soft magnetic materials are suggested.

High entropy alloys are conveniently produced using the additive manufacturing technology [5]. 
To prevent component failure a structure and design evaluation known as structural health monitoring 
SHM [6] can then be performed for a risk based analysis and quality assurance. The aim of the article is 
to get to a better understanding of the material properties of high entropy alloys. It is organized as 
follows. In the next section the theory on elementary excitations in disordered alloys is presented and a 
many body problem is formulated. In Section 3 results are presented for the mixing entropy of an ideal 
solid solution consisting of n components. The discussion of the quasiparticle density of states reveals 
that many body effects are most prominent for near equal component concentrations, i.e. 𝑐𝛼 =  1⁄𝑛 for
all 𝛼. These many body effects are ultimately responsible for the microstructure and thus the mechanical 
properties of high entropy alloys.  In Section 4 the lattice gas model is applied to disordered alloys.  
Conclusions are drawn in Section 5. 

2. Theory

The perfectly periodic solid is invariant with respect to translational symmetry operations so that the

one particle contribution of the Hamiltonian becomes diagonal in 𝒌-space. The Bloch theorem may then

be applied to reduce the total many body problem to that of a microscopic unit cell determined by the

lattice structure. On the other hand, for disordered systems, e.g. alloys, the Bloch theorem is not

applicable. For reasons of simplicity we consider a substitutional alloy consisting of several compounds

with similar bandstructure. Additionally we restrict the calculation to a one band model to obtain the

model Hamiltonian in the formalism of 2nd quantization

𝑯 =  𝑯𝟎  + 𝑯𝒑  =  ∑𝒊𝒋𝝈 𝑻𝒊𝒋  𝒂+
𝒊𝝈  𝒂𝒋𝝈  +  ∑𝒊𝝈 𝜼𝒊𝝈  𝒂+

𝒊𝝈 𝒂𝒊𝝈.

     (1) 

Here the term 𝑯𝟎 denotes a one electron contribution describing the hopping of an electron with spin

𝝈 from lattice site 𝑹𝒋 to lattice site 𝑹𝒊. The corresponding hopping integrals are related to the Bloch

energies via 

𝑻𝒊𝒋  =  
𝟏

𝑵 𝒌 𝜺 ( 𝒌)  𝒆𝒊𝒌 ∙( 𝑹𝒊− 𝑹𝒋 ).        (2)  ∑

The perturbation 𝑯𝒑 arises from different atom types with atomic energy level 𝜼 occupying the lattice

site 𝑹𝒊. It is this part of the Hamiltonian that is responsible for many body effects. The Hamiltonian of

Eq. (1) represents the simplest model to describe electrons in a multicomponent alloy. It contains no 

electron-electron interaction and only depends on the concentrations of different alloy components. It, 

however, includes electrons interacting with the local lattice potential via the Bloch energies.       

To determine 𝑯𝒑 the method of the effective medium [7] may be used. The potential of the fictitious

medium is chosen so that the corresponding many body problem can be solved exactly. The perturbation 

part of the Hamiltonian then describes the deviation of the local potential from that of the effective 

medium. As this is not known, it is varied until the quasiparticles are not scattered any more at the local 

potential. This implies that the many body problem becomes an effective one particle problem and the 

corresponding self-energy 

𝑴𝝈 (𝒌, 𝑬) = 𝟎.           (3)

Alternatively, for the calculation of the one electron Green function 𝑮𝒌𝝈 (𝑬) a configuration average

can be performed where for a given set of component concentrations 𝒄𝜶 an average over all possible

distributions of atoms is calculated. The coherent potential approximation CPA [8] describes a self-

consistent calculation where the self-energy 𝑴𝝈 (𝒌, 𝑬) becomes 𝒌-independent, i.e.

𝐌𝛔 (𝐤, 𝐄) =  𝐌𝛔 (𝐄).          (4)

The self-energy 𝑴𝝈 (𝑬) contains the contributions of the perturbation 𝑯𝒑, i.e. deviations of the atomic

energy levels from the ideal periodic solid. Within the CPA the configuration averaged one particle 

Green function becomes 
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〈𝑮𝒌𝝈 (𝑬)〉  =  
ħ

𝑬− 𝜺 (𝒌)+ 𝝁− 𝑴𝝈 (𝑬)
 .      (5) 

The quasiparticle density of states then follows from the 𝒌-summation 

𝝆𝝈 (𝑬) =  − 
𝟏

𝑵 𝝅
 𝑰𝒎  ∑

𝟏

𝑬− 𝜺 (𝒌)− 𝑴𝝈 (𝑬)𝒌 =  − 
𝟏

𝝅
 𝑰𝒎 ∫

𝝆𝟎 (𝒙)

𝑬−𝒙− 𝑴𝝈 (𝑬)
 𝒅𝒙

+ ∞

− ∞
.  (6) 

In the second step of Eq. (6) the 𝒌-summation is replaced by an integral over the free Bloch density of 

states that can be chosen in such a way to conveniently represent interacting particle systems. Numerical 

evaluations are presented in the next section.  

3. Results

Section 3 contains both analytical and numerical evaluations regarding the mixing entropy and the

quasiparticle density of states of high entropy alloys. The corresponding results are presented, discussed, 

and compared with those of other authors. 

3.1 The mixing entropy 

The mixing entropy 𝜟𝑺 for an ideal solid solution consisting of 𝒏 components is given as 
𝒏
𝜶=𝟏𝜟𝑺 =  −𝑹  ∑ 𝒄𝜶   𝐥𝐧 𝒄𝜶.                                             (7)

Here 𝑹 denotes the universal gas constant and 𝒄𝜶 the concentration of components of type 𝜶. For the

case 𝒏 = 𝟐 Eq. (7) simplifies to 

    𝜟𝑺 =  −𝑹  (𝒄  𝐥𝐧 𝒄  + (𝟏 − 𝒄)  𝐥𝐧(𝟏 − 𝒄)).               (8) 

The mixing entropy 𝜟𝑺 attains a maximum value if 
𝒅 ( 𝜟𝑺)

𝒅𝒄
=  −𝑹  𝐥𝐧 (

𝒄

𝟏−𝒄
)  = 𝟎.      (9) 

From Eq. (9) follows that 𝑐 =  𝟏⁄𝟐 . If the components are present in equal proportions, then 𝜟𝑺 is

maximized with 

(𝜟𝑺)𝒎𝒂𝒙  = 𝑹 𝐥𝐧 𝒏.               (10)

The result of Eq. (10) agrees with reference [9] suggesting that with larger values of 𝒏 the formation of 

random solid solutions in a multi element alloy system becomes more likely. However, the importance 

of a high mixing entropy with regard to an energy minimum is reduced with decreasing temperature.  

3.2. The Quasiparticle Density of States 

Eq. (6) is numerically evaluated for a binary alloy consisting of two components with concentrations 𝑐𝐴

and 𝑐𝐵 = 1 − 𝑐𝐴. Corresponding results are depicted in Fig 1 below. The pure crystal is described by
the undisturbed density of states with centres of gravity at energies 𝐸 = 0.5 and 𝐸 = 1.5 respectively. 
Moving away from this trivial situation the densities 𝜌(𝐸) start overlapping and additionally become 
more and more deformed. If the centres of gravity are far enough apart, then at intermediate 
concentrations 𝑐𝐴 =  𝑐𝐵 =  1⁄2 a band splitting is observed. This band splitting is a typical many body
effect which becomes more significant when the chemical potential falls into the band gap. In that case 
the alloy becomes semiconducting with interesting electronic and magnetic phenomena present like 
hybridization of localized and conduction electrons, mixed valence states, spin glass behavior, and 
superparamagnetism. Such phenomena are indeed observed in high entropy alloys. Similar results to 
those presented in Fig 1 below are also reported in reference [10]. 
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Figure 1. Density of states 𝜌(𝐸) as a function of energy 𝐸 for a binary alloy AB plotted for different 

component concentrations 𝑐𝐴.

4. The Lattice Gas Model

The lattice gas model [11] is applied to describe respectively liquids, disordered alloys, and magnetic

systems (Ising model). The total volume 𝑉 is subdivided into microscopic cells of volume ∆𝑉 that are

either occupied or unoccupied. One then distinguishes between two situations:

(1) There are large regions that are either completely occupied or unoccupied. Such a phase

separation occurs for temperatures 𝑇 ≤  𝑇𝐶.

(2) The occupied cells are statistically distributed over the entire volume 𝑉. This vapor phase is

realized at temperatures 𝑇 >  𝑇𝐶.

The coexistence line between the phase separated system and the homogeneous system is obtained from 

the ratio of atoms in the liquid state. This ratio is temperature dependent and described by the implicit 

equations  

𝑟 (𝑇) =  tanh (
𝛼  𝑟(𝑇)

𝑇
), 

𝑇𝐶  =  
𝑧  𝑤

2  𝑘𝐵
.    (11)  

The transition temperature depends on the number of nearest neighbours 𝑧 and the interaction energy 𝑤 

between molecules. Similar expressions for 𝑇𝐶 are also obtained from other models of phase transitions,

e.g. molecular field approximation of Heisenberg model. A numerical evaluation of Eq (11) yields the

results of Fig 2 below.
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Figure 2. Ratio of atoms 𝑟 (𝑇) (= 𝑠 (𝑇)) in the liquid state as a function of temperature 𝑇. 

At 𝑇 = 0 all atoms are in the liquid state, i.e. 𝑟 (𝑇 = 0) = 1. With increasing temperature more and 
more atoms become vaporized and 𝑟 (𝑇) continuously decreases as a function of 𝑇. At the transition 
temperature 𝑟 ( 𝑇 =  𝑇𝐶  ) = 0 as all atoms are vaporized; the corresponding phase transition is of second
order. This is further confirmed with the discussion of the heat capacity     

𝑥2

𝐶𝑉  =  
cosh 2 ,    (12)

where 𝑥 =  
𝛼

𝑇

( 𝑥)

 and the entropy 𝑆 (𝑇) as a function of temperature 𝑇 . Corresponding results are depicted 
in Figures 3 and 4 below.  As a response function the heat capacity has a peak at the critical temperature 
𝑇𝐶 ; such peaks are typical for 2nd order phase transitions. The entropy 𝑆 (𝑇) reaches saturation in the
high temperature limit where 

𝑆 (𝑇)  → 𝑁 𝑘𝐵   ln 2.     (13)
For a binary alloy this is identical to the result of Eq. (10) above. On the other hand, in the low 
temperature limit 

   𝑆 (𝑇 = 0) = 0.    (14) 
This is in agreement with the 3rd law of thermodynamics. Furthermore, at the critical temperature 𝑇𝐶 the
entropy function is continuous as expected for a 2nd order phase transition. 

Figure 3. Heat capacity 𝐶𝑉  (𝑇) as a function of temperature 𝑇.
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Figure 4. Entropy 𝑆 (𝑇) as a function of temperature 𝑇. 

5. Conclusions

In this work high entropy alloys are theoretically described using the method of the effective medium;

the corresponding many body problem is solved within the coherent potential approximation CPA. The

mixing entropy ∆𝑆 attains a maximum value for equal distribution of alloy components. The

quasiparticle density of states QDOS shows many body effects in exactly the same region of

concentrations. From the lattice gas model the critical temperature 𝑇𝐶 for phase separation is calculated.

The existence of a 2nd order phase transition is confirmed.
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